Structural equation modeling using partial least squares algorithm in educational and psychological research: an applied example to test a structural model of the relationships between artificial intelligence use, therapeutic alliance, and job engagement among mental health service providers
DOI:
https://doi.org/10.51930/jcois.21.2024.79.0499Keywords:
Partial least squares structural equation modeling, artificial intelligence, therapeutic alliance, functional integration, mental health providersAbstract
Structural equation modeling using the Partial Least Square-Structural Equation Modeling algorithm (PLS-SEM) is a statistical technique that has gained attention recently due to its flexibility and predictive power. However, there is a scarcity of guidance on applying this technique in the field of social sciences, especially education and psychology research. Therefore, this study aimed to apply the PLS-SEM algorithm as an advanced approach to structural equation modeling, highlight the justifications for its use and compare it to structural modeling using the variance method. PLS-SEM was applied using the SmartPLS program to a proposed structural model of the causal relationships between artificial intelligence use, therapeutic alliance, and job engagement. The descriptive approach was applied. The study sample consisted of (127) mental health service providers in the Kingdom of Saudi Arabia, including 58 males and 69 females aged 25-50 years. (36.32±6.43), the artificial intelligence questionnaire, therapeutic alliance scale, and job engagement scale were applied to them, all prepared by the researcher. The results found there were median levels of artificial intelligence use, therapeutic alliance, and job engagement, and also showed that the proposed structural model of artificial intelligence use and the therapeutic alliance has a good ability to predict job engagement and explain the interrelationships between them compared to the indicators model and the linear model. The results also revealed a strong overall positive effect statistically significant (p< 0.05) for the variable of attitude towards using artificial intelligence in the therapeutic alliance (0.941) and job engagement (0.930), and a moderate overall positive effect statistically significant (p< 0.05) for the therapeutic alliance in job engagement (0.694). These findings indicate the importance of integrating training of mental health providers on the skills of using artificial intelligence and generative artificial intelligence techniques into professional practice to develop their ability to build a therapeutic alliance with beneficiaries and enhance their sense of the importance of the profession and their well-being in it.
References
أولاً: المراجع العربية
أرنوط، بشرى إسماعيل أحمد. (2024أ). مقدمة في الإحصاء البايزي للعلوم الاجتماعية. دار كيان للنشر والتوزيع.
أرنوط، بشرى إسماعيل أحمد. (2024ب). مؤشرات جودة المطابقة للصدق البنائي والثبات لمقياس "تنانين التقاعس عن العمل" العوائق النفسية لجهود التخفيف والتكيف مع التغير المناخي: دراسة الفروق باستخدام الاحتمال البايزي. مجلة جامعة الأنبار للعلوم الإنسانية، ع2، 962- 1015.
الحناكي، منى سليمان؛ الحارثي، محمد عطية. (2023). واقع تطبيقات الذكاء الاصطناعي في التعليم العام بالمملكة العربية السعودية. المجلة العربية للمعلوماتية وأمن المعلومات، 13، 33- 76.
الخليفة، هند سليمان. (2023). مقدمة في الذكاء الاصطناعي التوليدي. مجموعة إيوان البحثية.
الداود، منيرة عبد العزيز. (2021). واقع استخدام تطبيقات الذكاء الاصطناعي في عمادة الموارد البشرية بجامعة الإمام محمد بن سعود الإسلامية. مجلة الجامعة الإسلامية للعلوم التربوية والاجتماعية، 5، 49- 93.
عبد الله، بكر محمد. (2023). فعالية برنامج لتنمية مهارات التحالف العلاجي في ضوء المخططات بين الشخصية وأنماط تعلق الأطفال ذوي اضطرابات المسلك. مجلة كلية التربية، جامعة عين شمس، 3(47)، 17- 62.
الغامدي، حنان محمد؛ العباسي، دلال عمر. (202). واقع تفعيل تطبيقات الذكاء الاصطناعي في البرامج الإثرائية للطلبة الموهوبين في مدارس ينبع وجدة من وجهة نظر الطلبة ومنفذي البرامج الإثرائية. المجلة الدولية لنشر البحوث والدراسات، 3 (28)، 591- 633.
الفقيه، حليمة حسن؛ الفراني لينا أحمد. (2023). واقع استخدام طالبات كلية الدراسات العليا التربوية بجامعة الملك عبد العزيز لتطبيقات الذكاء الاصطناعي في ضوء بعض المتغيرات. مجلة العلوم التربوية والنفسية، 7(1)، 1-19.
القحطاني، غادة علي. (2022). واقع استخدام الذكاء الاصطناعي في إدارة الموارد البشرية ومعوقاته ومتطلبات تطبيقه بجامعة الملك سعود من وجهة نظر هيئة التدريس بالجامعة. مجلة العلوم التربوية والنفسية، 6(55)، 1- 23.
القيسي، فاطمة عبد المجيد؛ دحادحة، باسم محمد. (2021). مستوى امتلاك المرشدين التربويين للمهارات الإرشادية وعلاقتها بكفاءتهم الذاتية المهنية في محافظة الكرك. مجلة كلية التربية، جامعة الأزهر، 40 (191). 383-424
لطفي، أسماء محمد. (2023). استخدام الذكاء الاصطناعي وعلاقته بالهوية المهنية والاندماج الوظيفي لدى أعضاء هيئة التدريس في ضوء بعض المتغيرات الديموجرافية. مجلة كلية التربية، جامعة عين شمس، 3 (74)، 15- 134.
مرسي، عايد؛ يونس، ربيع رشوان؛ سعادة، سامح أحمد. (2023). الضغوط النفسية وعلاقتها بفعالية الذات المهنية لدى الموجهين الطلابيين بالمملكة العربية السعودية. مجلة كلية التربية، جامعة الأزهر بالقاهرة، 42(199)، 159- 193.
المصري، إيمان عثمان؛ الطراونة، أخليف يوسف. (2021). واقع استخدام تطبيقات الذكاء الاصطناعي الداعمة لتحول الجامعات الأردنية الحكومية إلى جامعات منتجة من وجهة نظر القيادات الأكاديمية. مجلة كلية التربية، 37 (11)، 121- 145.
الهملان، أمل فلاح فهد. (2021). الاحتراق النفسي في ظل جائحة کورونا المسببة لفيروس کوفيد- 19 لدى العاملين في الصفوف الأمامية في مجال الرعاية الصحية والأمن بدولة الکويت. مجلة الإرشاد النفسي، جامعة عين شمس، 66 (66)، 365- 403.
ثانيًا: المراجع الأجنبية
Adeosun, O. T., & Adegbite, W. (2022). Human resource professionals and readiness for the future of work. EUREKA: Social and Humanities, 5, 39–50. https://doi.org/10.21303/2504-5571.2022.002486
Aktan, M.; Turhan, Z.; Dolu, I. (2022). Attitudes and perspectives towards the preferences for artificial intelligence in psychotherapy. Computers in Human Behavior, 133. https://doi.org/10.1016/j.chb.2022.107273
Al Eid, N. A., Arnout, B. A., Al-Qahtani, T. A., Pavlovic, S., AlZahrani, M. R., Abdelmotelab, A. S., & Abdelmotelab, Y. S. (2024). The potential role of religiosity, psychological immunity, gender, and age group in predicting the psychological well-being of diabetic patients in Saudi Arabia within the Bayesian framework. PloS one, 19(8), e0308454. https://doi.org/10.1371/journal.pone.0308454
Ali, F., Rasoolimanesh, S. M., Sarstedt, M., Ringle, C. M., & Ryu, K. (2018). An assessment of the use of partial least squares structural equation modeling (PLS-SEM) in hospitality research. The International Journal of Contemporary Hospitality Management, 30(1), 514–538.
Alqahtani, M.; Arnout, B.; Fadhel, F.; Sufyan, N. (2021). Risk perceptions of COVID-19 and its impact on precautionary behavior: A Qualitative Study. Patient Education and Counseling, 104, 1860- 1867.
Ardimen, A.; Dasril, D.; Tas’adi, R.; Yulitri, R.; Ramadhani, D.; Rozalina, D. (2023). Systematic review research on artificial intelligence in the counseling profession. AIP Conf. Proc, 2805 (1): 070005. https://doi.org/10.1063/5.0148809
Arnout, B. (2020). Counseling and Psychotherapy Programs. Scholar Press.
Arnout, B. A. (2021). Application of structural equation modeling to develop a conceptual model for entrepreneurship for psychological service workers during the COVID-19 pandemic. Work (Reading, Mass.), 69(4), 1127–1141. https://doi.org/10.3233/WOR-205245
Arnout, B. I. A., AlQahtani, T. S., & A L Melweth, H. (2024). Competitive capabilities of higher education institutions from their employees' perspectives: A case study of King Khalid University. PloS one, 19(5), e0302887. https://doi.org/10.1371/journal.pone.0302887
Barney, J. B., Ketchen, D. J., & Wright, M. (2021). Resource-Based Theory and the Value Creation Framework. Journal of Management, 47(7). https://doi.org/10.1177/01492063211021655
Bain, E.E., Shafner, L., Walling, D.P., Othman, A.A., Chuang-Stein, C., Hinkle, J., Hanina, A. (2017). Use of a novel artificial intelligence platform on mobile devices to assess dosing compliance in phase 2 clinical trial in subjects with schizophrenia. JMIR mHealth and uHealth, 5(2), 18-26.
Beatty, C., Malik, T., Meheli, S. & Sinha, C. (2022). Evaluating the Therapeutic Alliance with a Free-Text CBT Conversational Agent (Wysa): A Mixed-Methods Study. Front. Digit. Health 4:847991. doi: 10.3389/fdgth.2022.847991
Bingley, E.; Mehmetoglu, M., & Venturini, S. (2021). Structural equation modelling with partial least squares using Stata and R. London: Routledge.
Cartwright, D., & Gardner, M. (2016). Trainee difficulties with therapeutic engagement: A qualitative study of in-session critical incidents. South African Journal of Psychology, 46(2), 254-265. https://doi.org/10.1177/0081246315605679
Cunningham, P. B., Gilmore, J., Naar, S., Preston, S. D., Eubanks, C. F., Hubig, N. C., McClendon, J., Ghosh, S., & Ryan-Pettes, S. (2023). Opening the Black Box of Family-Based Treatments: An Artificial Intelligence Framework to Examine Therapeutic Alliance and Therapist Empathy. Clinical child and family psychology review, 26(4), 975–993. https://doi.org/10.1007/s10567-023-00451-6
Dijkstra, T. K., & Schermelleh-Engel, K. (2014). Consistent partial least squares for nonlinear structural equation models. Psychometrika, 79(4), 585–604.
Dlamini, N. P., Suknunan, S., & Bhana, A. (2022). Influence of employee-manager relationship on employee performance and productivity. Problems and Perspectives in Management, 20(3), 28–42. https://doi.org/10.21511/ppm.20(3).2022.03
Fadhel, F. H., Alqahtani, M. M. J., & Arnout, B. A. (2022). Working with patients and the mental health of health care workers during the COVID-19 pandemic. Work (Reading, Mass.), 72(1), 27–38. https://doi.org/10.3233/WOR-211134
Felten, E. W., Raj, M., & Seamans, R. (2019). The Variable Impact of Artificial Intelligence on Labor: The Role of Complementary Skills and Technologies. SSRN Electronic Journal, Figure 1, 1–6. https://doi.org/10.2139/ssrn.3368605
Fiske, A, Henningsen, P, & Buyx, A. (2019). Your robot therapist will see you now: ethical implications of embodied artificial intelligence in psychiatry, psychology, and psychotherapy. J Med Internet Res, 21: e13216. doi: 10.2196/13216
Flückiger, C., Del Re, A.C., Wampold, B.E., & Horvath, A.O. (2018). The alliance in adult psychotherapy: A meta-analytic synthesis. Psychotherapy (Chicago, Ill), 55(4), 316–340. 10.1037/pst0000172
Flückiger, C., Del Re, A.C., Wlodasch, D., Horvath, A.O., Solomonov, N., & Wampold, B.E. (2020). Assessing the alliance-outcome association adjusted for patient characteristics and treatment processes: A meta-analytic summary of direct comparisons. Journal of Counseling Psychology, 67(6), 706–711. 10.1037/cou0000424
Friedlander, M.L., Escudero, V., Welmers-van de Poll, M.J., & Heatherington, L. (2018). Meta-analysis of the alliance–outcome relation in couple and family therapy. Psychotherapy, 55, 356–371. 10.1037/ pst0000161
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.). Thousand Oaks, CA: Sage.
Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Castillo Apraiz, J., Cepeda-Carrión, G., & Roldán, J. L. (2019a). Manual de partial least squares structural equation modeling (PLS-SEM). (Seconda Edizione). Barcelona: OmniaScience.
Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Magno, F., Cassia, F., & Scafarto, F. (2020). Le Equazioni Strutturali Partial Least Squares: Introduzione alla PLS-SEM. (Seconda Edizione). Milano: Franco Angeli.
Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Richter, N. F., & Hauff, S. (2017). Partial Least Squares Strukturgleichungsmodellierung (PLS-SEM): Eine anwendungsorientierte Einführung. München: Vahlen.
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019b). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24.
Hair, J., & Alamer, A. (2022). Partial Least Squares Structural Equation Modeling (PLS-SEM) in second language and education research: Guidelines using an applied example. Research Methods in Applied Linguistics, 1(3) 100027. https://doi.org/10.1016/j.rmal.2022.100027
Hair, J.F., Hult, G.T.M., Ringle, C.M., Sarstedt, M., Danks, N.P., Ray, S. (2021). An Introduction to Structural Equation Modeling. In: Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. Classroom Companion: Business. Springer, Cham. https://doi.org/10.1007/978-3-030-80519-7_1
Hair, J., J., Sarstedt, M., Hopkins, L. & Kuppelwieser, V. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26, 2, 106-121. https://doi.org/10.1108/EBR-10-2013-0128
Henseler, J. (2021). Composite-based structural equation modeling: Analyzing latent and emergent variables. New York, NY: Guilford Press.
Jacob, N. A. (2018). Competency Mapping of Employees in the Banking Sector. De Paul Journal of Scientific Research, 5(1), 43–52
Jarvie, H.; & Linden, H. (2024). Exploring Human Therapists' Perspectives on Artificial Intelligence Therapists in Mental Health Care. http://hig.diva-portal.org/smash/get/diva2:1882451/FULLTEXT01.pdf
Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., et al. (2017). Artificial intelligence in healthcare: past, present and future. Stroke Vasc Neurol, 2:230–43.
Jordan, M.I., Mitchell, T.M. (2015). Machine learning: Trends, perspectives, and prospects. Science, 349(6245), 255–60
Karver, M.S., De, Nadai, A.S., Monahan, M., & Shirk, S.R. (2018). Meta-analysis of the prospective relation between alliance and outcome in child and adolescent psychotherapy. Psychotherapy, 55(4), 341– 355. 10.1037/pst0000176
Khaled, N., Turki, A., & Aidalina, M. (2019). Implications of artificial intelligence in healthcare delivery in the hospital settings. International Journal of Public Health and Clinical Sciences, 6(5), 22-38.
Kline, R. (2016). Principles and practice of structural equation modeling (6th ed.). Guilford Publications.
Lederman, R., & D'Alfonso, S. (2021). The Digital Therapeutic Alliance: Prospects and Considerations. JMIR mental health, 8(7), e31385. https://doi.org/10.2196/31385
Mahwah, N.J., Erlbaum, G., M., Teeroovengadum, V., Becker, J.-M., & Ringle, C. M. (2020). This fast car can move faster: A review of PLS-SEM application in higher education research. Higher Education, 80, 1121–1152.
Malik, N., Tripathi, S. N., Kar, A. K., & Gupta, S. (2022). Impact of artificial intelligence on employees working in industry 4.0 led organizations. International Journal of Manpower, 43(2), 334–354. https://doi.org/10.1108/IJM-03-2021-0173
Mashudi, E.; Rusmana, N.; Ni'mah, I.; Fatihaturosyidah, C. (2019). Impovements of pre-service counselor skill in building therapeutic alliance using peer coaching method. Proceedings of the 2nd International Seminar on Guidance and Counseling. (ISGC2019). http://creativecommons.org/licenses/by-nc/4.0/
Memon, M. A., Ramayah, T., Cheah, J.-H., Ting, H., Chuah, F., & Cham, T. H. (2021). PLS-SEM statistical programs: A review. Journal of Applied Structural Equation Modeling, 5(1), i–xiv.
Millington, I. (2019). AI for Games. CRC Press.
Nurski, L. & Hoffman, M. (2022). The impact of artificial intelligence on the nature and quality of jobs. Working Paper, 14/2022, Bruegel.
Prescott, J. & Hanley, T. (2023). Therapists' attitudes towards the use of AI in therapeutic practice: considering the therapeutic alliance. Mental Health and Social Inclusion, 27 (2), 177- 185.
Richter, N. F., Sinkovics, R. R., Ringle, C. M., & Schlägel, C. (2016). A critical look at the use of SEM in International Business Research. International Marketing Review, 33(3), 376–404
Ringle, C. M., Wende, S., & Becker, J.-M. (2015). SmartPLS 3 [computer software]. Bönningstedt: SmartPLS. Retrieved from 7 https://www.smartpls.com
Ringle, C., Wende, S., & Becker, J. (2024). SmartPLS 4. Bönningstedt: SmartPLS, https://www.smartpls.com.
Roa, T. M., Biller-Andorno, N., & Trachsel, M. (2021). The ethics of artificial intelligence in psychotherapy. In M. Trachsel, J. Gaab, N. Biller-Andorno (Eds.) & Ş. Tekin & J. Z. Sadler (Ed.), The Oxford Handbook of psychotherapy ethics (pp. 744–758). Oxford University Press.
Robelo, A.; Verboom, D.; Santos, N.; & Graaf, J. (2023). The impact of artificial intelligence on the tasks of mental healthcare workers: A scoping review. Computers in Human Behavior: Artificial Humans (CHBAH), 1(2), 1-14.
Russell, S.; Dewey, D. & Tegmark, M. (2015). Research priorities for robust and beneficial artificial intelligence. AI Magazine, 36: 105-114. https://doi.org/10.1609/aimag.v36i4.2577
Sarstedt, M., & Cheah, J. H. (2019). Partial least squares structural equation modeling using SmartPLS: A software review. Journal of Marketing Analytics, 7(3), 196–202.
Sarstedt, M., Hair, J. F., & Ringle, C. M. (2022). Partial least squares structural equation modeling. In C. Homburg, M. Klarmann, & A. Vomberg (Eds.), Handbook of Market Research. Cham: Springer.
Sebri, V., Pizzoli, S. F. M., Savioni, L., & Triberti, S. (2020). Artificial Intelligence in mental health: professionals’ attitudes towards AI as a psychotherapist. Annual Review of CyberTherapy and Telemedicine, 18, 229–233.
Sedlakova, J., & Trachsel, M. (2022). Conversational Artificial Intelligence in Psychotherapy: A New Therapeutic Tool or Agent? The American Journal of Bioethics, 23(5), 4–13. https://doi.org/10.1080/15265161.2022.2048739
Shah, R., & Goldstein, S. M. (2006). Use of structural equation modeling in operations management research: Looking back and forward. Journal of Operations Management, 24(2), 148–169.
Shmueli, G., Sarstedt, M., Hair, J.F., Cheah, J., Ting, H., Vaithilingam, S. and Ringle, C.M. (2019). Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. European Journal of Marketing, 53, 11, 2322-2347.
Streukens, S. and Leroi-Werelds, S. (2016). Bootstrapping and PLS-SEM: a step-by-step guide to get more out of your bootstrap results. European Management Journal, 34, 6, 618-632.
Susilo. (2020). Terhadap Penggunaan Sistem Informasi Sumberdaya Manusia. 8(1), 1–7
Sweeney, C., Potts, C., Ennis, E., Bond, R., Mulvenna, M. D., O’Neill, S., Malcolm, M., Kuosmanen, L., Kostenius, C., Vakaloudis, A., McConvey, G., Turkington, R., Hanna, D., Nieminen, H., Vartiainen, A.-K., Robertson, A., & McTear, M. F. (2021). Can chatbots help support a person’s mental health? Perceptions and views from mental healthcare professionals and experts. ACM Transactions on Computing for Healthcare, 2(3), Article 25. https://doi.org/10.1145/3465480
Triberti, S., Gorini, A., Savioni, L., Sebri, V., Pravettoni, G. (2019). Avatars, and the disease: Digital customization as a resource for self-perception assessment in breast Cancer patients. Cyberpsychology, Behavior, and Social Networking. 2019; 22(8): 558-564.
Usakli, A., & Kucukergin, K. G. (2018). Using partial least squares structural equation modeling in hospitality and tourism: Do researchers follow practical guidelines? International Journal of Contemporary Hospitality Management, 30(11), 3462–3512.
van Zyl, G. (2022). Industry and geographic dynamics of employee productivity levels for different major job codes and age categories in the South African workplace. Journal of Economic and Financial Sciences,15(1), 1–13. https://doi.org/10.4102/jef.v15i1.708
Wahl, B., Cossy-Gantner, A., Germann, S., & Schwalbe, N. R. (2018). Artificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings? BMJ global health, 3(4), e000798.
Wampold, B.E., & Flückiger, C. (2023). The alliance in mental health care: Conceptualization, evidence, and clinical applications. World Psychiatry: Official Journal of the World Psychiatric Association (WPA), 22(1), 25–41. 10.1002/wps.21035
Wong, K. (2019). Mastering partial least squares structural equation modeling (PLS-SEM) with SmartPLS in 38 hours. Bloomington, IN: iUniverse.
Xiaomei, Z.; Sen, W. & Qin, H. (2021). Impact of Skill Requirements on Employees’ Thriving at Work: From the Perspective of Artificial Intelligence Embedding. Foreign Economics & Management, 43(11), 15-25.